FreeWheel

<u>Background</u>

Currently, suspensions comprise of a system of highly fricative gears connected to the engine. Each introduced contact point saps a little bit of the engine's output, and creates engines that have low mileage ratings and require refueling or recharging.

Mission

Our project's goal is to virtually eliminate these existing, inefficient suspension systems in today's cars by creating a magnetically levitating suspension, making contact with the body of the vehicle only at a single, low-friction point.

Cost Breakdown

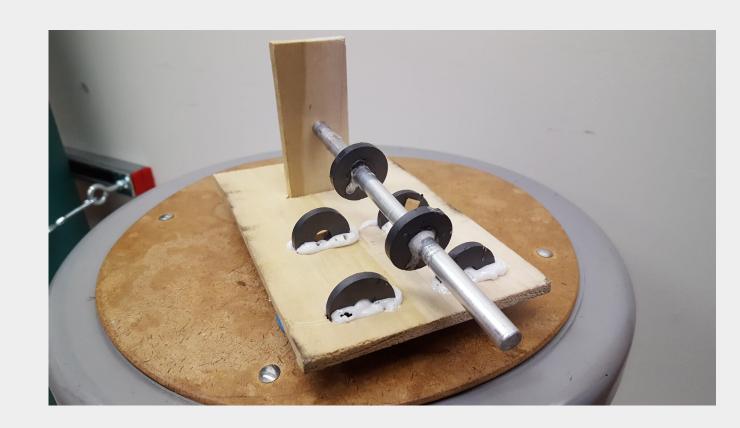
Budget = \$2411.64

Bearings
3D Printing
Housing (
washers, nuts, screws)

Brushless
Motor, Axle
Rod,
Neodymium
Earth-Magnets

Fall

R&D a simplified


Experiment with

different bearings

prototype

**Tron!

- Our new design simplifies past work on the FreeWheel, reducing complex arrays of magnets into a single 4 magnet system.
- System allows for stable rotation along the axis (represented by our rod)

Winter

- Implement electromagnets to prototype
- Begin R&D of a controls system to supplement the electromagnets

Spring

- Introduce magnetic rotation
- Finalize the controls system

Advisor: Yun Wang; Team Members: Siddharth Baranwal, Tandy Li, Suchith Shantharaj