CIRCULAR UAV

UCI Samueli School of Engineering

Background

Aerobat Aviation, with their circular planform aircraft Geobat, has claimed characteristics such as low stall speeds while maintaining directional control and stability, stability and maneuverability at high speeds, and a wing structure that allows the lifting forces to be distributed with greater uniformity.

Goal

This project aims to build a technology demonstrator to evaluate these claims.

Objectives

- Design, build & fly the circular planform UAV
- Analyze performance data

Requirements

Rate of climb: 600 ft/min

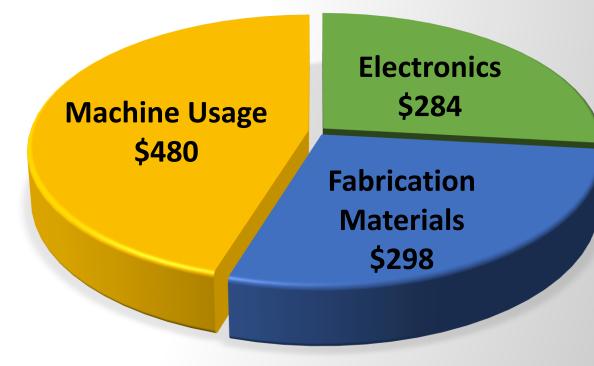
Range: 3 miles

• Endurance: 20 minutes

• Stall speed: 11 mph (16 ft/sec)

Structural Skeleton

- Embedded in the foam body
- Made of carbon fiber tubes and
 3D printed joiners
- Provides structural rigidity for the aircraft


Advisors: Haithem E. Taha | Colin Sledge

XPS Foam Body

- Comprised of 3 distinct pieces (main wing, tail, wingtips)
- CNC router used to manufacture accurate shape

Budget

Innovation & Bigger Picture

- Innovative circular planform aircraft
- Validating the flight dynamics of a circular planform aircraft

Fall	Winter	Spring
Conceptualize	Design Documentation	Final Assembly
Requirement Calculations	Procurement	Validation
Aircraft Configuration	Fabrication	Flight Test

Next Step

- Installing electronics and RC components
- Flight testing
- Wind tunnel/CFD testing

Team Members & Contact Info

Moses Choi, Project Manager: mosessc@uci.edu Zihao Zou, Team Member: zzou1@uci.edu

